The SSD dilemma
As early as 15 years ago, when memory sticks and SD cards started to become more and more prevalent, forensic researchers began looking into how evidence can be recovered from such storage media. Due to features like "wear leveling" and garbage collection, which automatically re-arrange content on the storage media even without instruction by the host computer, the consensus was that it is very difficult to make true forensic bit-level copies of flash storage media, and that it is even harder to obtain reliable copies of "unallocated space".
Since then, both the size and usage of solid state disks (SSD) have grown significantly. Laptops and tablets are today often sold with SSD storage by default, and do no longer contain any spinning disk drives.
Recent research shows the full dilemma that this rapid adoption brought with it:
- In an outstanding paper, Graeme Bell and Richard Boddington show the effects of what they call "self-corrosion": how simply applying power to a SSD disk or memory stick can be sufficient for the on-board micro controller to start re-arranging and zeroing out storage sectors, and how this affects evidence preservation and recovery of deleted files. If you are pressed for time, scroll to chapter 6 on page 12, and just read their "Recommendations and Guidance".
- An equally interesting paper by researchers from UCSD shows the other angle of the same problem: How difficult it is to reliably erase content from SSD drives. The authors show that software used to wipe single files mostly does not work at all with SSDs, and that traditional software used to wipe entire drives often does not reliably erase the SSD media, either.
Conclusions:
- If you are into forensics and evidence preservation, keep track of and familiarize yourself with all the types of SSD media in use in your company, and how they behave during forensic acquisition, before you actually need to do so in earnest on a real case.
- If your company is still using the "wipe and re-use" processes developed for magnetic disks also for SSD media, update your procedures to include instructions for SSD media. Since the UCSD paper quoted above shows quite dismal results even when using the built-in "Secure Erase" command of the SSD device, you might have to come up with a combination of several erasing methods to more reliably scrub the disk. The best solution today is to deploy full disk encryption (TrueCrypt, etc) to portable devices with SSD media, because this addresses several risks (loss/theft/inability to wipe) in one swoop.
If you have pointers to recent research or suggestions on how to deal with forensic acquisition or secure wiping of SSD media, please let us know or comment below.
Comments